Finite-Domain Cuts for Graph Coloring

نویسندگان

  • David Bergman
  • John N. Hooker
  • J. N. Hooker
چکیده

We explore the idea of obtaining valid inequalities from a finite-domain formulation of a problem, rather than a 0-1 formulation. A finite-domain model represents discrete choices with variables that have several possible values, as is frequently done in constraint programming. We apply the idea to graph coloring and identify facet-defining cuts that, when converted to cuts in a 0-1 model of the problem, provide tighter bounds on the chromatic number than known 0-1 cuts. In particular, we show that finite-domain cuts for webs and odd holes are superior to standard cuts, and that two cuts for an odd cycle (a generalization of an odd hole) yield substantially tighter bounds, in much less time, than hundreds or thousands of standard cuts. We also identify a large family of facetdefining cuts for intersecting systems, for which there are apparently no previously known 0-1 cuts.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new approach to compute acyclic chromatic index of certain chemical structures

An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. The acyclic chromatic index of a graph $G$ denoted by $chi_a '(G)$ is the minimum number $k$ such that there is an acyclic edge coloring using $k$ colors. The maximum degree in $G$ denoted by $Delta(G)$, is the lower bound for $chi_a '(G)$. $P$-cuts introduced in this paper acts as a powerfu...

متن کامل

Edge-coloring Vertex-weightings of Graphs

Let $G=(V(G),E(G))$ be a simple, finite and undirected graph of order $n$. A $k$-vertex weightings of a graph $G$ is a mapping $w: V(G) to {1, ldots, k}$. A $k$-vertex weighting induces an edge labeling $f_w: E(G) to N$ such that $f_w(uv)=w(u)+w(v)$. Such a labeling is called an {it edge-coloring k-vertex weightings} if $f_{w}(e)not= f_{w}(echr(chr(chr('39')39chr('39'))39chr(chr('39')39chr('39'...

متن کامل

Graph Coloring Facets from All-Different Systems

We explore the idea of obtaining valid inequalities for a 0-1 model from a constraint programming formulation of the problem. In particular, we formulate a graph coloring problem as a system of alldifferent constraints. By analyzing the polyhedral structure of alldiff systems, we obtain facet-defining inequalities that can be mapped to valid cuts in the classical 0-1 model of the problem. We fo...

متن کامل

Vertex Cuts

Given a connected graph, in many cases it is possible to construct a structure tree that provides information about the ends of the graph or its connectivity. For example Stallings’ theorem on the structure of groups with more than one end can be proved by analyzing the action of the group on a structure tree and Tutte used a structure tree to investigate finite 2-connected graphs, that are not...

متن کامل

A practical algorithm for [r, s, t]-coloring of graph

Coloring graphs is one of important and frequently used topics in diverse sciences. In the majority of the articles, it is intended to find a proper bound for vertex coloring, edge coloring or total coloring in the graph. Although it is important to find a proper algorithm for graph coloring, it is hard and time-consuming too. In this paper, a new algorithm for vertex coloring, edge coloring an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012